Symmetric Equations on the Surface of a Sphere

Gary L. Russell, David H. Rind, Jeffrey Jonas
NASA Goddard Institute for Space Studies
Published in Geoscientific Model Development
December 2018
do1:10.5194/gmd-2018-126



Part [ : Symmetric Equations on the Surface of a Sphere

Th
Ac
All

ree symmetric coordinates used for two-dimensional horizontal flow.
'vantages:
| quantities are defined continuously over the whole spherical surface.

All

| three components of vector quantities use same lines of computer code.

Part II : Icosahedral B-grid model programmed with Symmetric Equations
Primary horizontal grid cells are 12 regular pentagons and numerous
irregular hexagons.

B-grid means centers of momentum cells coincide with corners of primary

orl

d cells.



Coordinates

According to the “hairy ball theorem™ of Poincare, every continuous
horizontal vector field on the surface of a sphere has a 0.

A continuous unit vector on the spherical surface has a discontinuity.

A differentiable coordinate on the spherical surface requires a continuous
unit vector which will have a discontinuity.

Latitude and longitude coordinates are discontinuous at north and south
poles.

Also, 1f two coordinates are not orthogonal on a surface,
then greater obtuseness of the angle between the coordinates decreases
stability and precision of the results.



Suppose the hairs are straight and are
one unit long representing a
coordinate which has a polar
discontinuity.

Next, suppose the hairs represent
horizontal velocity and are cut
smoothly so that they are of length 0

at the pole.

Although the coordinate still has a
discontinuity, velocity 1s continuous
everywhere because it 1s 0 at the pole.




Problem with two coordinate flow

For horizontal vector fields to be continuous they must be 0 where the
coordinate 1s discontinuous.

For this reason, shallow water models were rewritten using derivatives of
scalar quantities such as kinetic energy, vorticity, divergence, stream
function, or velocity potential using local coordinates which may be
different from from those of their neighbors. After manipulation, vector
velocity 1s resurrected. Models are much more complicated.

To be shown later with 3 symmetric coordinates:

A derivative with respect to a coordinate or a vector field will
continuously approach 0 as the coordinate approaches its pole.
Consequently, quantities are continuous over the whole sphere.

At one coordinate pole, the other two coordinates are perpendicular



Symmetric Coordinates on the Sphere

Center of the sphere 1s at the origin with orthogonal axes X, Y, and Z.
X and Y pass through Earth’s equator; Z aligns with north-south axis.

Two separate triplets of symmetric coordinates are defined:
W, v, A = longitude (asimuth) of the axes X, Y, Z respectively
0, &, ¢ = latitude (altitude) of the axes X, Y, Z respectively

A and ¢ are Earth longitude and latitude, Z 1s the north-south axis.



New Coordinates Z
The Z axis, aligned with Earth’s north-south axis, uses
the Earth’s labels: latitude, longitude, equator, poles.
The X and Y axes want to use those labels also.

In symmetric equations, any mention of Z axis labels

in an equation also occurs 1n a similar fashion to X
and Y axes. 5




Position vector P on unit sphere

P = vector from center of sphere to point on unit sphere.
P has magnitude 1.

P 1s perpendicular to horizontal vectors on the surface of the sphere.
P=(X,y,2)=

= (S1no, COS|L COSO, SINL COSO) =

= (sinv cosg, SINg, COSV COSE) =

= (CosA cos(, sinA coso, sing) = normal Lat and Lon

= (s1nod, sing, SINQ) = symmetric coordinates

Extra credit: compute (X, y, z) as symmetric function of u, v, and A



Gradient of scalar /4 defined by symmetric and Lat-Lon coordinates:
Vh = (coso dh/d0, cose dh/de, cosp dh/0¢)/ R Symmetric
Vh=(E dh/OA+ N cosp dh/0¢) / R cos@ Lat-Lon

Vh 1s horizontal

R = radius of sphere (m)

E and N = unit vectors 1n eastward and northward directions

Laplacian of scalar /# defined by symmetric and Lat-Lon coordinates:
V2h = (0%h/0p? + 0%h/0V? + 0%h/0N?) | R? Symmetric
V2h = [02h/0N\? + cosp d(cosp dh/0@)/0¢p] / R*cos?e  Lat-Lon
When point approaches north or south pole, d4/0A approaches zero.



A = Specific Angular Momentum on unit Sphere (m/s)

A=P XYV

V=AXP

V = horizontal velocity (m/s)

A 1s horizontal, has the same magnitude as V, and is at right angle to V.
Advecting A removes the metric term from the momentum equation.

Flux form advection conserves global A exactly.
A simplifies several formulas where local coordinates were formerly used.



Alignment, vectors should be horizontal

Specific angular momentum, A, 1s supposed to be horizontal, tangential
to the spherical surface.

Vertical column mixing, either moist convection or vertical advection,
maintains alignment; the Coriolis force maintains alignment.

Pressure gradient force via Green’s theorem and horizontal advection
distorts alignment; A 1s no longer horizontal.

Alignment is restored by projecting A onto the sphere’s tangent plane.
Aarionep = A - (P-A)P
Individual alignment errors are small.



Mass flux (kg/s) across a spherical arc from n, to n,
M= fn’“ RhV - -Fdn= fn’“ Rh (PXV) - (PXF) dn = fn"'th A-Edn=
=R [ "hA-dP

h = mass per unit area (kg/m?)

F = horizontal unit vector perpendicular to arc

E = horizontal unit vector parallel to arc

M. .»=Rh, _,A,»(P,— P, )= finite difference mass flux
Integrating over the grid cell corner points: Py, Py, .. P\=P,

and setting grid cell area to K:
Ah — At 2 Mn-1/2 /K — R At Z hn—1/2 An_1/2 (Pn — Pn-l) /K



Similarly, the Pressure Gradient Force for shallow water equations 1s:
AA=RAtZ®D_ ,,(P.—P. /K

Ah=RAtXh i, A, 1, (P,—P,.)) /K repeated for comparison

® = /i * Gravity = geopotential (m?/s?)

For AA, P loops over the corners of the momentum A or B cells.
P and ® are centered at primary C cells, @, ;, 1s an average value.

It 1s also possible to assume that @ 1s linearly interpolated from corners
n-1 to n and compute the integrand for an edge 1n closed form.

For Ah, P loops over the corners of the primary C cells.



Since Williamson et al. [1992] numerical schemes for the shallow water
equations have been compared using Rossby-Haurwitz wave 4.

For cubed-sphere models starting from Rossby-Haurwitz wave 4, each
wave-length remains identical because 1t lies above the same grid
arrangement.

For 1cosahedral models starting from Rossby-Haurwitz wave 5, each
wave-lengths remains 1dentical.

3 is relatively prime to both 4 and 5, so we use Rossby-Haurwitz wave 3.

With RH wave 3, separate wave-lengths diverge among themselves,
and there 1s more variety in the errors that may occur.

Icosahedral model decays on day 45, cubed-sphere decays on day 26;
cach of these two model use symmetric equations.
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wave 3.

Shallow water
equations.

Both 1cosahedral
and cubed-sphere
grid use symmetric
equations.
Arakawa B-grid
and C-grid are Lat-
Lon schemes.
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Cubed-Sphere grid cell arrangement

Top diagram shows projection of grid cells
from the center of a cube face onto the
sphere; they are squares.

Bottom diagram shows projection of grid
cells form the corners of the cube onto the
sphere; they are parallelograms.

This arrangement causes all kinds of terrible
harmonics and numerically induced errors.
Almost any cell arrangement will cause grid
imprinting errors, but those of an icosahedral
orid 1s less severe than those of a cubed-
sphere grid.




Icosahedral B-grid model — the Raw grid

An 1cosahedron has 12 vertices, and for grid level 0, these vertices are
primary cell centers. Perpendicular bisecting arcs between the centers
determine the primary cell edges, 12 regular pentagons for grid level O.

Adding half way centers to the original near-by centers produces the next
grid level. Grid level 1 has 12 pentagons and 30 hexagons: a soccer ball.
Grid level n has 2+10*4" primary cells.

Momentum cell centers are the corners of primary cells; the corners of
momentum cells are the centers of primary cells. 20*4" momentum cells.

The icosahedron 1s grouped into 5 wedges or 4 triangles each. Each
wedge touches both the north and south poles. A 12 processor computer
divides the sphere into a north pole cell, a south pole cell, and 10 half
wedges. Coding allows the half wedges to be divided by powers of 4.
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Progress to date

Starting from single layer model icosahedral B-grid model.
Momentum uses partial upstream advection; no filters are needed.
Program to produce Post-Script file on 1cosahedral native grid.

Multi layers are counted from top down.

Step-mountain: C cells are whole, momentum cells may be fractional.
MPI coding allows 2 + 10*4" processors.

Tracer advection allows vertical gradients, but not in the horizontal.
Pressure gradient force uses 2 terms: gradients of pressure and geopotential.
Non-conservative interpolation scheme from Lat-Lon to icosahedral grid.
Z file (surface fraction and topographies) are created for icosahedral grid.
Time uses Gregorian calendar.

Atmospheric 1nitial conditions file created and read by model.

Restart file written and read back in.

AlJ diagnostics accumulated and written to .PRT file.




Two Tracer Advection Schemes have been programmed.

Each scheme uses mean and vertical gradients, but no horizontal gradients.
For each advective time step: .5 vertical, full horizontal, .5 vertical.

One scheme, HGAS, has no restriction on sign or magnitude of tracers.
Second scheme, WVAP, restricts tracers to be non-negative. If summation
of outgoing fluxes exceeds tracer mass 1n a cell, outgoing fluxes are
reduced proportionally.

Schemes are tested using solid body rotation without topography;
equatorial velocity 1s circumference divided by 10 days, ~46.3 (m/s).
Except for two equatorial triangles on opposite sides of the globe, the
initial value for each scheme is 1. Initial value inside the triangles 1s 11, at
the C cell edges 1t 1s 6, and at the C cell corners 1t 1s 3. Apex of one
triangle aligns with the plot’s edge. Tracer 1s very sharp at edges.
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The multi-layer solid body rotation simulation with two tracers, 32 vertical
layers, and grid level 5 (10242 cells) was integrated on haswell nodes of the
Discover super computer at Goddard Space Flight Center. The wall-clock time
for a 50 day simulation 1s as follows:

12 processors, 1 node, 37:13 (min:sec), time ratio = 1.00
42 processors, 2 nodes, 10:15 (min:sec), time ratio = 3.63
162 processors, 6 nodes, 2:56 (min:sec), time ratio = 12.69
642 processors, 23 nodes, 1:14 (min:sec), time ratio = 30.18

Vertical advection of tracers makes no MPI Halo subroutine calls because the
advection 1s applied to both necessary and halo cells. With 642 processors and
orid level 5, each non-polar processor performs vertical computations on 25
horizontal columns. It 1s also possible to perform the vertical computations on
16 columns and follow that with an MPI Halo subroutine call.



Coding for Coriolis force

I,J,K are horizontal indices. K indicates wedge. J and K are combined.
L 1s vertical layer. There are twice as many A and B momentum cells as
there are primary C cells. XYZ = position vector P; XYZ(3) = sin¢.

Do 20 JK=JK@,JKM ; Do 20 I=10,IM
Do 20 N=1,3 ; Nml = N-1 ; If (N==1) Nml1 =3
Npl = N+1 ; If (N==3) Npl =1

Do 10 L=1,LMAA(I,JK)
VANCN,L,I,JK) = VANCN,L,I,JK) + 2*DT*OMEGA*XYZA(3,I,IK) *
(XYZA(Nm1,I,IK)*VA(Np1,L,I,JK) - XYZA(Np1,I,JK)*VA(Nm1,L,I,JIK))
Do 20 L=1,LMBA(I,JK)
20 VBN(N,L,I,JK) = VBN(N,L,I,JK) + 2*DT*OMEGA*XYZB(3,I,JK) *
(XYZB(Nm1,I,JK)*VB(Npl,L,I,JK) - XYZB(Npl,I,JK)*VB(Nm1,L,I,J]K))



Pressure Gradient Force

Amean = vertically mass weighted specific volume (m?3/kg) on C cells
AverAmean = Amean area weighted to momentum triangular A cells
Pmean = C cell pressure (Pa) at corner of momentum A cells

GZmean = vertically mass weighted altitude (m) times Gravity (m/s?)

Pmean, GZmean, Amean are located at corners of momentum cells.

Do JK=JK@,JKM ; Do I=IQ,IM
Do L=1,LMAA(T,JK)
AverAmean = FSADL(L,I,JK)*Amean(L,I,JK) + FSAELCL,I,JK)*Amean(L,I+1,JK+1) + FSAFLCL,I,JK)*Amean(L,I,JK+1)
VAC:,L,I,JK) = VAC:,L,I,JK) + DT * &
(xGZCOOA(:,L,I,IK) * (AverAmean*Pmean(L,I ,JK ) + GZmean(L,I ,JK D)) + &
xGZC11A(:,L,I,IK) * (AverAmean*Pmean(L,I+1,JK+1) + GZmean(L,I+1,JK+1)) + &
xGZCO1A(:,L,I,IK) * (AverAmean*Pmean(L,I ,JK+1) + GZmean(L,I ,JK+1))) ; EndDo



Advection of momentum

MFLUXA and VFLUXA are vertical fluxes of mass and momentum.
FLUXD , FLUXE , FLUXF are horizontal fluxes on momentum cell edges.
yAREAAL(m) = reciprocal of area for momentum cell A.

I ¥*** Advect mass and angular momentum on A cells of Layers 2:LM-1
Do 520 L=2,LM-1
VAN(C:,L,I,JK) = VAO(C:,L,I,JK) * MAOCL,I,JK) + DT * yAREAAL(L,I,JK) * &
(VFLUXA(C:,L-1) - VFLUXA(C:,L) - VFLUXD(C:,L,I,JK+1) - VFLUXE(C:,L,I,JK) - VFLUXF(C:,L,I,JK))
MANC L,I,JK) = MAOC L,I,JK) + DT * yAREAAL(CL,I,JK) * &
(MFLUXAC L-1) - MFLUXAC L) - MFLUXDC L,I,JK+1) - MFLUXEC L,I,JK) - MFLUXFC L,I,JK))
520 VAN(C:,L,I,JK) = VAN(C:,L,I,JK) / MAN(CL,I,JK)



Future Work for Model-I

Year 1: Source term subroutines from older Atmosphere-Ocean Model
(AOM) will be re-indexed to work on symmetric icosahedral grid. Some
variables will be renamed. Resulting Model-I should work as well as
AOM did, but numerous features will be similar to Model-E.

Years 2-5: Model-E coding will be converted to Fortran-90 and cleaned
up with proper indentation. Some features of Model-I (Gregorian
calendar, water vapor mass, total energy conservation per subroutine)
will be implemented into Model-E. One at a time, Model-E subroutines
will be re-indexed and be inserted into Model-I.



